Chapter Student Learning Outcom	e Checklist:
3 F&PC Math 10 - Factors and Prod	ucts Name
3.1 Determine prime factors, greatest con least common multiples of whole nu	mmon factors, and mbers
Determine Prime Factorization of 3600 3600 3' 700 2' 450 2' 450 3' 5 33 $3600 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5$	Determine Prime Factorization of 3780 3780 3780 3780 3780 $3780 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 7$
Determine greatest common factors of 3600 and 3780 $3600 = 222 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5$ $3780 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 5$ $GCF = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5$ = 180	Determine least common multiple of 3600 and 3780 $3600 = 2^4, 3^3, 5^3$ $3780 = 2^2, 3^3, 5, 7$ LCM = $2^4, 3^3, 5^2, 7$ = 75600

3.2 Identify perfect squares and perfect cubes, then determine square roots and cube root with and without calculator

3.3 Model and record factoring a polynomial		
Use algebra tiles to factor $3x^2 + 9x - 3$	Algebraically factor $3x^2 + 9x - 3$	
$\begin{bmatrix} 3 & 9 & 0 & 0 \\ 0 & 7 & 3 \\ 0 & 7 & 7 & 3 \\ 0 & 3 & 7 & 7 & -3 \\ 0 & 3 & 7 & 7 & -3 \\ 0 & 3 & 7 & 7 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$3x^{2}+9x-3$ = 3($x^{2}+3x-1$)	

3.4 Explore factoring polynomials with a	algebra tiles	
3.5 Use models and algebraic strategies to multiply binomials and to factor		
trinomials of the form $x^2 + bx + c$		
Use algebra tiles to factor $x^2 + 6x + 8$	Algebraically factor $x^2 - 5x - 14$	
x^{2} x+4 $x^{2}+6x+5=(x+4)(x+2)$	$x^{2}-5x-14$ $-7x^{2}=-14$ -7+2=-5 =(x-7)(x+2)	

3.6 Extend the strategies for multiplying trinomials. $ax^2 + bx + c$	g binomials and factoring
Use algebra tiles to factor $2x^2 + 5x + 3$	Algebraically factor $3x^2 + 7x - 6$
$\frac{x^{2} x^{2} x x}{2x+3} = (2x+3)(x+1)$	$3x^{2}+7x-6 \qquad \text{mn}=3(-6) \\ = -18 \\ = 3x^{2}+9x-2x-6 \qquad 9 \\ x=2=-18 \\ = (3x^{2}+9x)-(2x+6) \qquad 9 \\ x=7 \\ = 3x(x+3)-(2x+6) \qquad 9 \\ x=7 \\ = -18 \\ 9 \\ x=2=-18 \\ 9 \\ x=7 \\ = -18 \\ 9 \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ = -18 \\ y \\ x=7 \\ = -7 \\ =$

3.7 Extend the strategies for multiplying binomials to multiplying polynomial			
Multiply $(3x-2)(x^2-4x+5)$ Multiply $(2m^2-3n)^2$			
3x (x2-4x+5)-2(x2-4x+5)	$(2m^2-3n)(2m^2-3n)$		
$= 3x^3 - 12x^2 + 15x - 2x^2 + 8x - 10$	$= 2m^{2}(2m^{2}-3n) - 3n(2m^{2}-3n)$		
= 3x3-14x2+23x-10	$=4m^{4}-6m^{2}n-6m^{2}n+9n^{2}$		
	$=4m^{4}-12m^{2}n+9n^{2}$		

3.8 Special factoring patterns—perfect square trinomial, difference of squares	
Factor $4m^2 + 12mn + 9n^2$	Factor $9a^2 - 16b^2$
mn = 4 (9) = 36 <u>6 × 6 = 36</u>	$9a^2 - 16b^2$
$\frac{6+6}{4m^2+6mn+6mn+9n^2} = 12$	$= (3a)^2 - (4b)^2$
=2m(2m+3n)+3n(2m+3n)	= (3a+4b) (3a-4b)
= (2m+3n)(2m+3n)	
$(2m+3n)^2$	

Put a check in the right hand column if the Assignment is completed and marked from the back of the textbook.

Date	Торіс	Assignment	Complete
	3.1 Factors and Multiples of Whole Numbers	p. 140 For each of the questions that have multiple parts, pick 2 #3, 6, 11,19	
	3.2 Perfect Squares, Perfect Cubes, and Their Roots	p. 146 #4-6ac,7-8a,9,10	
	3.3 Common Factors of a Polynomial	p.155 #3, 4 ,7-10(pick 2 of each), 12, 16 (pick 2), 17	
	3.5 Polynomials of the Form $x^2 + bx + c = 0$	p. 166 #4,6,7, 9-15ac,19,20	
	3.6 Polynomials of the Form $ax^2 + bx + c = 0$	p.177#5-13ac, 14, 18-19ac or if you were in class: p.177 #5-6ac, 10a, 13ac, 18-19ac	
	3.7 Multiplying Polynomials	p.186#4-5a,7,8,13,15 or if you were in class: p. 186 #4-5a, 7ai, 8a, 13a, 15f	
	3.8 Difference of Squares	p. 194 #12, 15,	
	3.8 Perfect Square Trinomials	p. 194 #5,10aceg, 13,20 Factoring Worksheet	
	Review	p.198 #1-4c, 6-7a, 9,10, 19d, 23,25ad,29a,30a, 32-33c, 35	
	Group Review		